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The first dianionic {Fe(NO)2}
10 dinitrosyliron complexes (DNICs)

[Fe(SC7H4SN)2(NO)2]
2- (1) and [Fe(OC7H4SN)2(NO)2]

2- (2),
coordinated with thiolates and amides, were prepared by the
reaction of Fe(TMEDA)(NO)2 with 2 equiv of ligands [SC7H4SN]

-

and [OC7H4SN]
-, respectively. The reversible interconversion bet-

ween the dianionic {Fe(NO)2}
10 DNICs 1/2 and the anionic {Fe-

(NO)2}
9[Fe(SC7H4SN)2(NO)2]

- (3)/[Fe(OC7H4SN)2(NO)2]
- (4),

respectively, was demonstrated. The transformation of DNICs 2
and 3 into the thermally stable DNICs 1 and 4, respectively, via the
ligand-exchange reaction reveals that [OC7H4SN]

- shows a high
binding affinity toward the {Fe(NO)2}

9 motif and [SC7H4SN]
-

prefers the {Fe(NO)2}
10 motif. This result rationalizes that the

intermolecular electron transfer from DNIC 2 to DNIC 3 occurs to
lead to the formation of the more thermally stable DNICs 1 and 4
upon the reaction of DNICs 2 and 3 in tetrahydrofuran.

Interest in nitric oxide (NO) derives from its physiological
and biological functions in living organisms.1 In vivo, NO
can be stabilized and stored in the two forms protein-bound
thionitrosyls (RproteinSNO) andprotein-bound dinitrosyliron
complexes (protein-bound DNICs).2 The displacement of
protein-boundDNICswith free thiols/thiolates yielding low-
molecular-weight DNICs (LMW-DNICs) has been sugge-
sted.3 In vitro/in vivo, bothprotein-boundDNICs andLMW-
DNICs are possibly identified and characterized by their
distinctive electron paramagnetic resonance (EPR) signals at

g= 2.03.4 In spite of the major thiol components of cellular
DNICs composed of cysteine and glutathione in vivo,5

DNICs ligated by phenoxide, thiolate, imidazole, and depro-
tonated imidazole were proposed in enzymology based on
EPR spectra.3a,6 Recently, the protein-bound DNIC with
[S, O] ligation has been well characterized by anX-ray diffrac-
tion study via the addition of a dinitrosyldiglutathionyliron
complex into human glutathione transferase P1-1 in vitro/in
vivo.6c In biomimetic complexes, varieties ofDNICs contain-
ing S/O/N-donor ligands were synthesized to serve as spec-
troscopic references.7,8On thebasis of theEnemark-Fetham
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notation,9 these synthesized LMW-DNICs can be classified
as the EPR-active {Fe(NO)2}

9 DNICs and the EPR-silent
{Fe(NO)2}

10 DNICs. In spite of a large number of neutral
{Fe(NO)2}

10 DNICs with nitrogen or phosphorus ligands,
the dianionic {Fe(NO)2}

10 DNICs are limited.8 Recently, we
report themonoanionic sulfur-containing {Fe(NO)2}

10DNIC
[K-18-crown-6-ether][Fe(SC6H4-o-NMe2)(NO)2].

10 In addi-
tion to the classical four-coordinate DNICs, the nonclassical
DNICs, including the five-coordinate DNICs [(6-Me3-
TPA)Fe(NO)2]

þ and [(TMEDA)Fe(NO)2I],
11,12 and the

six-coordinateDNIC[(1-Melm)2(η
2-ONO)Fe(NO)2],

13arealso
structurally characterized. In this contribution, the dianionic
{Fe(NO)2}

10DNICswith [thiolate, thiolate] and [amide, amide]
ligation, [Fe(SC7H4SN)2(NO)2]

2- (1) and [Fe(OC7H4SN)2-
(NO)2]

2- (2) [cation = Na-18-crown-6-ether (1-Na/2-Na),
PPh4 (1-PPh4/2-PPh4)], were delineated. The reversible inter-
conversion among the dianionic {Fe(NO)2}

10DNICs1/2 and
the anionic {Fe(NO)2}

9DNICs [Fe(SC7H4SN)2(NO)2]
- (3)/

[Fe(OC7H4SN)2(NO)2]
- (4) [cation = Na-18-crown-6-ether

(3-Na/4-Na), PPh4
þ (3-PPh4/4-PPh4)] was demonstrated. In

particular, the different binding affinities of [OC7H4SN]-

versus [SC7H4SN]- toward the{Fe(NO)2}
9/{Fe(NO)2}

10motif
were studied.
The reaction of Fe(TMEDA)(NO)2 with 2 equiv of [SC7-

H4SN]- and [OC7H4SN]- yieldedDNICs 1 and 2 characteri-
zedby single-crystalX-ray diffraction, IR, andUV/vis spectra,
respectively (Scheme 1a,b). DNICs 1 and 2 display the EPR-
silent {Fe(NO)2}

10 electronic structureswith [thiolate, thiolate]/
[amide, amide] ligation mode. Compared to the other {Fe-
(NO)2}

10 DNICs, 1-PPh4 is the first example of the dianionic
mononuclear {Fe(NO)2}

10 DNICs coordinated with two
thiolate ligands.

Upon the addition of Cp2FePF6 into the CH3CN solution
of DNICs 1 and 2 in a 1:1 stoichiometry, respectively
(Scheme 1c,d), oxidation ensued over the course of 5 h to yield
the {Fe(NO)2}

9DNICs3and4, respectively, identifiedbyEPR
and IR spectra. In contrast to ligand-centered oxidation of
the thiolate-containing {Fe(NO)2}

9DNICs resulting indimeric
{Fe(NO)2}

9-{Fe(NO)2}
9 Roussin’s red esters (RREs),7c,f the

isolation ofDNIC 3may reveal that oxidation of the thiolate-
containing {Fe(NO)2}

10 DNICs is a metal-centered process.
In cyclic voltammograms of 3-PPh4 and 4-PPh4, the quasi-

reversible one-electron reductions at-0.94 and-1.17V (E1/2

vs Fcþ/Fc), respectively, in CH3CN are observed and as-
signed to the {Fe(NO)2}

9-{Fe(NO)2}
10 couple (Figure S1 in

the Supporting Information). The slightly negative reduction
potential of 4-PPh4 versus that of 3-PPh4 indicates that [OC7-
H4SN]- has a stronger electron-donating ability than [SC7-
H4SN]-. The chemical reduction of 3-PPh4 and 4-PPh4 with
CoCp2 (Scheme 1c0,d0) afforded {[PPh4][CoCp2]}{[Fe(SC7-
H4SN)2(NO)2]} and {[PPh4][CoCp2]}{[Fe(OC7H4SN)2-
(NO)2]}, respectively, characterized byFourier transform IR.
The reduction process is also consistentwith the {Fe(NO)2}

9-
{Fe(NO)2}

10 couple in the cyclic voltammogram of 3-PPh4/
4-PPh4. In contrast to the reduction of the thiolate-contain-
ing {Fe(NO)2}

9DNICs leading to the dissociation of thiolate
of DNICs reported previously,7b the redox reaction of
DNICs 3 and 1displays the reversible interconversion between
the thiolate-containing {Fe(NO)2}

9 and {Fe(NO)2}
10 DNICs.

The relative affinity of the different ligands toward the
{Fe(NO)2}

9 motif has been studied by Liaw et al. via the
ligand-exchange experiments.7b,g,j Similarly, the coordinated
ligands [SC7H4SN]- of {Fe(NO)2}

9 3-PPh4 could be replaced
by the stronger donor [OC7H4SN]- to yield the more stable
4-PPh4 (Scheme 1f). Interestingly, the addition of 2 equiv of
[SC7H4SN]- to the tetrahydrofuran (THF) solution of {Fe-
(NO)2}

10 2-Na led to the light-green precipitates of the more
stable 1-Na, characterized by IR spectra (Scheme 1e). The
different binding affinities of [OC7H4SN]- and [SC7H4SN]-

toward the {Fe(NO)2} core of DNICs reveal that the elec-
tron-rich {Fe(NO)2}

10 motif prefers the binding of the less
electron-donating ligand [SC7H4SN]-. In contrast, the stronger
electron-donating ligand [OC7H4SN]- favors coordination
to the electron-deficient {Fe(NO)2}

9 motif. This rationaliza-
tion may support the fact that the reaction of {Fe(NO)2}

10

2-PPh4 and {Fe(NO)2}
9 3-PPh4 afforded the relatively stable

{Fe(NO)2}
9 4-PPh4 and {Fe(NO)2}

10 1-PPh4 via intermole-
cular electron transfer in THF (Scheme 2).
Figures 1 and 2 display the thermal ellipsoid plots of the

dianionic 1-PPh4 and 2-PPh4, respectively, and the selected
bond angles andbond lengths are given in the figure captions,
respectively. The structures of 1-PPh4 and 2-PPh4 contain a
four-coordinate iron center in a distorted tetrahedral geometry.
Comparisons of themean Fe-S bond distances [2.2941(18) Å
in [PPN][Fe(SC7H4SN)2(NO)2]

7b vs 2.3460(13) Å in 1-PPh4]
andFe-Nbonddistances [1.993(2) Å in4-PPh4 (Figure S2 in
the Supporting Information) vs 2.094(2) Å in 2-PPh4] reveal

Scheme 1 Scheme 2
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that reduction of the {Fe(NO)2}
9 core to the {Fe(NO)2}

10

core leads to elongation of the Fe-N and Fe-S distances.
Meanwhile, the shorter Fe-N(O) bond distances of 1.644(4)
and 1.638(3) Å and the longer N-O bond distances of
1.199(4) and 1.203(3) Å found in 1-PPh4 and 2-PPh4,
respectively, compared to the Fe-N(O) bond distances of
1.684(6) and 1.687(2) Å and the N-O bond distances of
1.174(6) and 1.175(3) Å found in [PPN][Fe(SC7H4SN)2-
(NO)2] and 4-PPh4, respectively, are consistent with a relati-
vely considerabledegreeofπ-back-bonding in the {Fe(NO)2}

10

core. In contrast to the distinct bond distances in [PPN][Fe-
(SC7H4SN)2(NO)2] and 1-PPh4/4-PPh4 and 2-PPh4, the
comparable Fe-N-O bond angles [169.9(5)� in [PPN][Fe-

(SC7H4SN)2(NO)2] vs 168.0(4)� in 1-PPh4 and 163.6(2)� in
4-PPh4 vs 164.6(3)� in 2-PPh4] are observed when the
{Fe(NO)2}

9DNICs are reduced to the structurally analogous
{Fe(NO)2}

10 DNICs.
In summary, the dianionic {Fe(NO)2}

10 DNICs contain-
ing [thiolate, thiolate]/[amide, amide] ligation were isolated
and structurally characterized. The synthetic methodology
reveals thatFe(TMEDA)(NO)2 acts as an {Fe(NO)2}

10motif
donor reagent in the presence of thiolates and amides. The
redox reaction between DNICs 1/2 and 3/4 successfully
demonstrates the reversible interconversion with no dissocia-
tion of the coordinated ligands of the structurally analogous
{Fe(NO)2}

9/{Fe(NO)2}
10 DNICs. The ligand substitution

reactions of DNICs 2 and 3 to form the relatively stable
DNICs 1 and 4, respectively, have demonstrated that the
{Fe(NO)2}

9 motif shows a strong preference for the stronger
electron-donating ligands over the weaker electron-donating
ligands; however, the {Fe(NO)2}

10 motif shows a stronger
binding affinity toward the weaker electron-donating li-
gands. In addition to the ligand-exchange reactions yielding
the more stable DNICs,7b,g,j the reaction of {Fe(NO)2}

10

2-PPh4 and {Fe(NO)2}
9 3-PPh4 yielding the relatively stable

{Fe(NO)2}
9 4-PPh4 and {Fe(NO)2}

10 1-PPh4 may signify
that the intermolecular electron transfer between {Fe(NO)2}

10

and {Fe(NO)2}
9 DNICs is the alternative mechanism to

afford the more stable DNICs for transport and storage of
NO in biology. Studies on the electronic structure (NO/Fe
oxidation states) of the series of {Fe(NO)2}

9/{Fe(NO)2}
10

DNICs by X-ray absorption spectroscopy and density func-
tional theory calculations are ongoing. Also, the binding pre-
ference of a series of ligands toward {Fe(NO)2}

9/{Fe(NO)2}
10

motifs is currently being investigated in our laboratory.
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Figure 1. Structure of the anion of 1-PPh4 displaying 50% thermal
ellipsoids for all non-hydrogen atoms. Selected bond distances (Å) and
angles (deg): Fe(1)-N(1), 1.645(4); Fe(1)-N(2), 1.642(4); Fe(1)-S(1),
2.3679(13); Fe(1)-S(3), 2.3240(13); N(1)-O(1), 1.193(4); N(2)-O(2),
1.205(4); Fe(1)-N(1)-O(1), 168.3(4); Fe(1)-N(2)-O(2), 167.6(4);N(1)-
Fe(1)-N(2), 115.34(19); S(1)-Fe(1)-S(3), 84.48(5).

Figure 2. Structure of the anion of 2-PPh4 displaying 50% thermal
ellipsoids for all non-hydrogen atoms. Selected bond distances (Å) and
angles (deg): Fe(1)-N(1), 1.638(3); Fe(1)-N(2), 2.094(2); N(1)-O(1),
1.203(3);N(1)-Fe(1)-N(1A), 110.45(19);N(2)-Fe(1)-N(2A), 88.80(13);
Fe(1)-N(1)-O(1), 164.6(3).


